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Abstract

The LMTO method is used to calculate the electronic band structure of iron
in the e-phase (hep) and in the 4-phase (fce) for seven compressions from 4.to 980
GPa. The electronic specific heat ¢, (T') is calculated for each phase by. numeri-
cal integration from the resultant density of states. Previous work is thus sup-
ported for ~-iron and extended to e-iron, the most likely inner core component.
A simple parameterization of ¢,, is given for use in making geophysical estimates.
Other thermodynamic parameters which are calculated are the electronic free
energy, the thermal electronic pressure, and an electronic Gruneisen parameter,
Ye -

Recent studies of liquid iron and iron alloys indicate that the density of
states at the Fermi level does not differ much frc;m that calculated for pure cry-
stalline iron. We cautiously apply our results to the outer core and find that

¢,, = 1.8+0.5R and v, = 1.3+0.4. This indicates that the total heat capacity of

. the core is one-quarter that of the entire Earth. -






1. Introduction

Constraints on our geophysical understanding of the deep earth can be provided by
experimental and theoretical study of the high-pressure, high-temperature physics of
iron, which is thought to be a major core component. Brown and McQueen (1982)
pointed out that shock wave experimental data can provide tighter constraints if we
better knew the important auxiliary parameters, the heat capacity and the Gruneisen
parameter. Since these parameters are current.iy not well constrained by experiment we

must turn to the available theory of transition metal physics.

We report here a theoretical study of the electronic thermc;dynunie.s, under large
eompl.'essions, for two phases of iron, the e-phase (hcp structure), thought to constitute
the inner core (Brown and McQueen, 1982), and the y-phase (fcc structure). Such elec-
tronic effects are significant under core conditions - we calculate for iron a heat capacity
more than 50% larger than that given by the classical Dulong and Petit value of 3R,

where R is the gas constant.

) ) P}evious- work involv;in; electronic band -structure"calcuh.tion for iron has concen-
trated almost exclusively on the low pressure - low temperature phase, a-iron (bee struc-
ture). Callaway and Wang (1977) applied the linear combination of Gaussian orbitals
(LCGO) method in a self-consistent, spin polarized calculation for ferromagnetic iron.
They found the best agreement with experimental data for the exchange and correlation
potential of von Barth and Hedin (1972) Moruszi et l. (1978) performed a Kohn-
Korrmg»Rostoker (KKR) calculation on a-iron with the muffin-tin approximation to the
potential (Janak, 1974).. '

Pressure bas seldom been incorporated into iron band structure work. Recently
Vinturova et ol (1979) used a model KKR Hamiltonian to calculate compressional
effects on ferromagnetic iron. Johnson et al. (1984) applied the Af’w method to calcu-
late spin-polarized energy bands at the normal lattice constant and at lattice spacings

corresponding to approximate pressures of 128 and 256 kbar. A phase transition from



a-iron to e-iron occurs at 130 kbar (Jamieson and Lawson, 1962); bowever, the 256 kbar
calculation of Johnson et al. (1984) was performed in order to check for a linear varia-

tion of the extremal areas of the Fermi surface with pressure.

Bukowinski (1976,19'.17) calculated the band structure for ~-iron to obtain an equa-
tion of state under inner core conditions. The muffin-tin form of the potential was used
and the energy eigenvalues were calculated at 19 points in the reduced Brillouin zone for
this APW calculation. A major result of his_ work is the elimination of electronic transi-
tion as a viable explanation for the existence of the inner core - outer core discontinuity.
His work indicated that the electronic sfructure of ~-iron is stable to at least two-fold
compression. However, the pressure given by the equation of state is too large for a
given volume.

* The other close-packed.l'orm of iron was considered by Young and Grover (1984),
v;ho constructed a semiempirical equation of state -for e-iron. By dividing the total
energy into mean field, interatomic pair potential, and el;ctronic thermal terms, they
used five adjustable éarametem_’for fits to the available data deﬁning_ the exﬁerimenta.l
iaot.llerm, Hugoniot, and melting curve. The equation of state thps ‘obtained is the basis

for the pressure calibration used in the present work.

We calculate the electronic band structure of both e-iron and +-iron using the accu-
rate, yet computationally efficient, linear muffin-tin orbital method (LMTO), described
at length elsewhere (Andersen, 1975, 1983; Andersen and Jepsen, 1977; Skriver, 1984).
Jepsen et al. (1975) used the LMTO method to calculate the band structure for the hep
metals zirconium, hafnium, ruthenium, and osmium. Although. they did not consider the
effect of compression, it is encouraging that the several band structures they con;ﬁuted
with this method yield Fermi surfaces that are in excellent agreement with available de
Haas-van Alphen measurements, indicating that the calculated d-band position is typi-

cally misplaced by less than 10 mRy (=2Xx 1072 J).

Since neither e-iron- nor firon is expected to display magnpetic order at core



temperatures, it is not necessary to includé spin eoupling eflects in band structure calcu-
lations for these two phases. Mossbauer measurements down to 0.030 K detected no
measureable hyperfine ﬁ;ld for e-iron in the pressure range from 1 bar to 215 kbar (Cort
et al., 1982; Williamson et o, 1972). Neutron scattering measurements at 1320 K
revealed ~-iron to be paramagnetic with a moment of 0.9 + 0.1 up (Brown et al,
1983). A close-packed liquid iron alloy at much higher temperatures is more unlikely yet
to possess magnetic order, even under an applied magnetic field such as is generated in
the outer core.

High-temperature thermodynamics based on the electronic energy distribution are
computed in the present work using Fermi-Dirac statistics to thermally populate accessi-
ble single electron states. This quantum-statistical approach is the correct formalism to

treat thermodynamic properties associated with conduction electrons.

We emphasize that the current band structure calculations are for pure solid iron.

- The inner core of the earth is almost certainly solid, as is evidenced by observations of

-_ "spheroidal shear modes (Masters and Gilbert, 1981) and of body wave phases (Choy and

Cormier, 1983). It is believed that such aoiidity results from the freezing of pure iron
out of an outer core mixture of iron and one or more lighter alloying elements. However,
the outer core is about twenty times as massive as the inner core, and hence any band
structure calculation that successfully treats the electronic properties of a liquid iron
alloy under high pressure and temperature is of geophysical interest. Unfortunately, it
difficult to theoretically model the electronic properties of liquids and alloys. The addi-
tional eomplexit:ies imposed by transition metal orbital structure and the geophysical
requirement of extreme conditions make complete theoretical treatment of candidate
outer core mixtures an elusive goal at the present time. We discuss this point in section

S.
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2. Electronic Density of States

The electronic densities of states for the two phases of iron were obtained using the
LMTO method aa pres"en.t;d in Skriver (1984). The combined-correction term to the
LMTO method was included, the exchmge;eorrelation potential of von Barth and Hedin
(1972) was assumed, and angular momentum components through { character were
retained. -

Our calculation used no adjustable parameters, such as a, the exchange parameter
of Slater’s X-a method for approximating the effect of exchange and correlation (Slater,
1974). Bukowinski (1976) determined o in his calculation by demanding that the pres-
sure, as calculated from the virial theorem, be zero at the experimentally estimated 0 K
Iattice constant of ~iron. The LMTO method implicitly uses an a=2/3 for the
exchange-only part of the potential (Skriver, 1984).

All reported results here are from nonrelativistic calculations. Test scalar relativis-
tic calculations, in which all relativistic contributions except spin orbit are included, were

carried out at one compression and resulted in slight changes in the density of states and .

only a 1% change in the electronic specific heat.

The valence band structure was computed on meshes of 150 and 240 points per
irreducible wedge for the hep and fee structures, respectively, after obtaining one-
electron potentials from calculations in which all electrons are treated self-consistently.
The tetrahedral method (S):’giirer,l%ﬁ) was then used to obtain the electronic density of
states on an energy grid having approximately 134 points betwe;n the bottom of the 4s
band and the Fermi level. Test hep calculations using 252 points per irreducible wedge
had negligible effect on the calculated electronic specific heat, while more than doubling
the energy grid over which the density of states was calculated changed the calculated
specific heat by only 1%.

Calculations were carried out for each structure at six compressions V/V,,

corresponding to values of the Wigner-Seitz radius Rys = 2.6, 2.5, ..., 2.0 bohr,, where
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V= %tkwg’ is the volume per atom in the solid. These cellular parameters

correspond to pressures of near zero to more than five megabars. We further discuss

pressure calibration in section 4.

Plots of the density of states for four intermediate compressions are shown in Fig. 1
for -iron and in Fig. 2 for e-iron. A vertical line indicates the Fermi energy for each
plot. Clearly evident in these figures are large fluctuations in the density of states for
the 3d bands superimposed on the relatively low background of comparatively free-
electron-like 4s and 4p electrons. The sharp structure especially noticeable in the 3d
part of the density of states includes non_-diﬂ'erentisble points, the van que‘ singularities
(see, e.g., Ashcroft and Mermin, 1976). Superposition of the density of states plots for
both close-packed phases at any given compression reveals close correspondence in shape,
implying that calculated electronic physical properties should be similar for the two
phases. A density of states plot for non-close-packed _a-iron is different in overall shape

from that of iron in the other two structures (see, e.g., Moruzzi et al., 1978).

3. Calculation of the Specific Heat

Typically the electronic specific heat ;t non-zero temperature is derived from den-
sity of states curves via the Sommerfeld expansion for integrals with the Fermi function
in the integrand (Ashcroft and Mermin, 1976). Since the electronic specific heat at con-

stant volume is given by

o = (5] . ®

we must know the total electronic energy u, as a function of temperature. Fortunately

it has been previously demonstrated (McMahan and Ross, 1977) that up to a tempera-
ture of at least 20,000 K it is possible to accurately represent the temperature-dependent
part of this energy by simply summing over the zero-temperature one-electron eigen-

values E, or in terms of the density of states g(E),
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where f(E) is the fermi distribution function:

1 (B) =~y @

Similar form is shown by the equation for electron number density,
-
n, ={¢E 9(E) 1 (E). (5)

“ .
These integrals are of the general form [ dE H(E) f (E). Because of the shape of
’ ~-o0

the Fermi function f (E), [ dE H(E) f (E) deviates from its zero temperature value, .
-0

E
f dE H(E), due only to the contributions from the energy range about u of width a
-0

few kT . If there are no rapid variations of H(£) in this energy range then the tempera-
" ture dependence of the integral should be given accurately by representing H(E ) by the
first few terms of its Taylor expansion- about E = u: '

H(E)= E-E—H(E) ] Eel ()
-4

This leads to the explicit form of the Sommerfeld expansion:

@0 » [ ]

[ & H(E) 1 (E)= [ & HE)+ TOTPH )+ 25Ty o+ 0[2L) . @)

= = 8 360 B
Successive terms in this expansion become relatively smaller by O (kT /u)? which is
O (107™*) at room temperature for a free electron gas.

If the expansion is tru_nca.tec-l beyond terms of order T2 then the chemical potential

is given by

p=Ep - (kr)”; (f’)) (8)

The elect.rbnic energy density at constant number density becomes

o = u,+ TP (Ep), (5
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yielding the electronic specific heat at constant volume:

L o= EHT g(B). ' (10)
The accuracy of the approximation given by Eq. (10) is only as good as the assump-
tions inherent in the Sommerfeld expansion. For iron at temperatures and pressures
achievable in shock wave experiments the successive terms in the expansion drop off o.ne
hundred times as slowly as for a free electron gas at room temperature. (Increasing pres-
sure acts to increase u and hence further diminish successive terms in the expansion, but
the elevated temperature more than compensates for this effect.) This makes each term
about 1% as large as the one before it, so few terms (and hence few orders of derivatives
of H(E)) still are necessary to accurately represent the expansion.

A more important reason to question use of the Sommerfeld expansion in the
derivation of an expression for the electronic specific heat of iron arises upon examina-
tion of the complex structure of the density of states g (E'). As noted above, g (E') exhi-
bits van Hove s_ing'ul_n.rities, at which points_it.i-s_ impossible to diﬂe_renti:;te H{E), which
for .our ;pplication contains g (E ) Thus & -Taylor seri;s expansion is of questionable
validity. Although the Fermi energy falls in a trough of the density of states curves, the
effect of the high temperature Fermi function is to sample portions of adjacent peaks of
9(E). This is depicted in Fig. 3 for each structure at Ryg==2.3bohr. Indeed, within an
energy width of kT about the Fermi energy, ¢ (E) may vary b_y more than a factor of
two, especially for e-iron. It is for these reasons that we feel that a direct numerical
integration of Eq. (3) is warranted.

For the numerical calculation it is necessary to determine #(T), since it is con-
tained within the expression for the Fermi function f (E). This is accomplished by
using the constraint that iron bas electrons in its 4s, 3d valence band; hence n, = 8.
For practical calculations, the upper limits of the integrals in Eqgs. (2) and (4) may be

accurately truncated to about u(7T') + 10 kT.



The integrations themselves were performed using the trapezoidal rule, due to the
presence of g(E) in both integrands. Higher order integration techniques, as for example
those employing cubic 'spii;es, were tried but deemed unnecessary and even misleading
because of the complex structure in g(E), and specifically the non-differentiable van Hove
singularities. However, as noted above, when the density of energy grid points was more
than doubled, the calculated specific heat changed by only == 1%, and s0 our procedure
shoul.cl be more than adequate.. Differentiations were carried out using a standard three-
point formula (Burden, Faires, and Reynolds, 1978). All calculations were done with

double precision declarations in the computer code.

4. Calculational Results
.. The ¢, curves calculated for our seven compressions are given in Fig. 4 (y-iron)
and in Fig. 5 (€ -iron). The slight upward bend above approximately 2000 K clearly sug-
gests the appearance of T behavior already above this temperature. This indicates that
ll’ the Sommerfeld expa.nslon approxlmatlon is used, then another term should be
mcluded beyond that given by Eq. (10).
All the ¢, curves in Figs. 4 and 5 show a tendency to level off at the highest tem-

peratures shown, which can be easily understood from the g(E) plots in Figs. 1 and 2.

The usual free-electron argument for ¢, (T')<T is that -E,I- electrons are excited, each
F

receiving approximately T in thermal energy. As can be seen in Figs. 1 and 2, how-
ever, the Fermi levels for both phases of iron lie in troughs between sharp peaks in g(E).
At sufficiently high temperature, the electronic distribution g(E) spans the two peaks.
There is a tendency for new electronic excitations to be largely from the l;vwer occupied
peak to the higher empty peak; thus there is a constant excitation energy in contrast to
one proportional to T as in the case of free electrons. This leads to a region of
%, (T )T, and the tendency of the ¢, curves in Figs. 4 and 5 to level off for awhile at

high temperatures. Since features in g(E) scale roughly as (V /V )%/, it requires higher



temperatures to achieve this effect: at the higher compressions, and so the bebavior is

most pronounced for the smallest compressions shown in the figures.

In order to convert }m values to geophysically sensible quantities, we need a pres-
sure calibration. Typically pressure is calculated using the virial theorem. McMaban et
al. (1981) discuss relative applicability of this method of pressure calculation. Local
density calculations in general give poor pressures for the magnetic elements iron, cobalt,
and nickel. Methods such as LMTO usually give the zero pressure volume for any par-
tic-ular element to within 6% of the correct value. For iron, cobalt, and nickel it is
essential to use spin polarization for calculations in the ferromagnetic region. Yet at
high pressures where the non-spin-polarized calculations should w_ork well for the
paramagnetic e-iron phase, the calculated pressures are still poor, possibly due to resi-
dual magnetic effects at high compression. For this reason we chose to use the best
available p(V) curve, which is given by the semiempirical equation of state of Young and
_ Grover (1984). Their 0 K isotherm was used to provide an approximate pressure scale
~ -for our band structure va.lue; of- compression. -Tl.ble_ 1 gives the pressure correspondence
to Rys values. |

One purpose of this report is to provide a simple representation of the electronic
specific heat of iron up to the largest temperatures possible for the purpose of making
convenient geophysical estimates and in order to calculate shock Hugoniots for iron. We
find that a standard linear ¢, vs.T relation fits the lower temperature calculations while
a derivative of a hyperbola fits the higher temperature values in & manner simple-to-
parameterize, and hence useful for applications.

All of the specific heat curves begin to level off at approximately the same value of
the specific heat. We model this essentially linear portion by running a least-squares fit
to the specific heat curves truncated at the arbitrarily chosen ordinate cut-off of 1.4 R.
The resultant values of 8, the eoeﬂ')cie.nt of the linear aspect of the electronic specific

heat, are given in Table 2 for ¢ -iron and in Table 3 for +iron. A comparison is there
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made between our calculated S values and Bsemm 38 given by the standard expression
derived from the Sommerfeld expansion, Eq. (10), divided by temperature. It is seen
that our values for +Fé ;.;e slightly higher than those of Bukowinski (1977) and do not

decrease as rapidly with increasing .oompr_asion,a does B calculated from Eq. (10).

The internal energy curves, two examples of which are given in Fig. 6, can be
closely it by hyperbolae. For this reason the high temperature specific heat is here
modeled as the analytic derivative of a hyperbolic internal energy: '

¢y, = co + bT 1H{T /0, )5 1/2. (11)
This parameterization may be more physically "meaningful® than a physics-blind poly-
nomial fit. The parameter b behaves like a linear coeflicient of electronic specific heat,
B, while ©, serves as a characteristic temperature in a way not too unsimilar to an Ein-
stein O for lattice specific heat.

Good fits with simple behavior of free parameters were obtained for the specific
heat curves by restricting the range of fit to those temperatures and atomic volumes
apl;licz-ble to iron nl;der conditions of geoph_ysica.l interest. Tables 2 and 3 give the
cutoff temperature, T ,,, between the linear fit and the free-parameter fit. The parame-
ters were varied to fit the éomprasions of Rys == 2.1, 2.2, 2.3, and 2.4 bobr for each
structure separately. Those fits for 2.2 and 2.3 bohr are depicted in Fig. 7. The final
parameters are given in Table 4.

From the density of states we also calculated the electronic free energy, the thermal
electronic pressure, and the electronic Gruneisen parameter. Of .course, these thermo-

dynamic quantities arise from electronic contributions only, and are not total quantities.

The electronic free energy is given by

F,(V,T)== u,(V,T)-TS,(V,T), (12)
where the entropy
. .
alVoT) (13)

S,(V,T)={ 7
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Plots of F,(T) for each iron phase at p=12.28 Mg m™3 are shown in Fig. 6. Use of the

Sommerfeld expansion leuig_ to

F, = v, - S (B NATY, (14)
where u, is the electronic internal eherg at T=0K. At high temperature the free
energy, like the internal energy, deviates from the parabolic approximate form and
becomes somewhat linear such that the curve is approximately a hyperbola. This is
caused, as discussed above, by the smearing effect of the Fermi function on the two large

peaks due to d-bands near Ep in the g(E) function.
The thermal electronic contribution to the free energy is given by

AF,(V,T) = F,(V,T)-F.(V,T=0). (15)
Thermal pressure due to excited conduction electrons is -

3AF,(V,T)
—5v—).- (16)

Since we have band structure calculations for seven compressions we used cubic spline

ap.(V.T) =~

interpolation to -genei-a.te a smooth curve for AF,-, \yhii:h was subs.equently nun{erically
differentiated. For the range of Earth core compression the electronic thermal pressure
Ap, =6-12 GPa.

An application of the t_.herma.l pressure results is the calculation of an electronic
Gruneisen parameter. Thermodynamically, we may define the electronic Gruneisen
parameter as .

- Ap,(V,T) |
* = VeV o

(Zbarkov and Kalinin, 1971). Following the a.pproximati&ns arising from use of the Som-

merfeld expansion, Eq. (17) becomes

Olng(Ef) :
v, (18)

The electronic Gruneisen parameter is more readily calculated from the following



expression equivalent to Eq. (18) (Bukowinski, 1977):

v Te .
= p=.p,,[7;.] : (19)
Bukowinski’s results for ~iron are Sy = 4.47+0.15 mJ K2mol~! and ~, = 1.540.1.

Log-log fits of our B values given in Tables 2 and 3 yield the following results:
For ~piron: fy=4.99+1.01 mJ K~2mol~! and ~, =1.27+0.03;
. for e-iron: fy=5.06+1.01 mJ K 2mol~! and ~, ==1.34+0.02.
The uncertainties are one standard deviation of the given quantity.

Direct numerical calculation of 4, from Eq. (17) gave virtually identical resuits for
the two phases of iron: 1.32+0.21 for +-iron and 1.3240.43 for e-iron. We found that

the ratio Ap,(V,T)/Au,(V,T) exhibited essentially no temperature dependence above

3000 K.

5. Applicability of results to the outer core

Our calculations are for pure iron i _the' hep and fec structure-s_. The substance _
comprising the earth’s outer _eon;e is neither pure iron nor in 2 solid phase. How;ver, we
argue on the basis of other recent research that the electronic thermodynamics of pure,
crystalline, close-packed iron is similar to that of liquid iron and to that of iron alloyed
with lighter, p-shell metals. In addition, the electronic properties of iron alloyed with
another 3d-shell transition metal, such as nickel, appear to be predictable from the elec-
tronic structures-of each metal in pure form. Thus electronic band structure calculations-

for close-packed iron can be cautiously applied to compositions and pressure and tem-
perature conditions specified by current models of the outer core.

We assume that the liquid iron alloy of the outer core has close-packed coordina-
tion. This seems reasonable because of the high compressions of the core; for the pres-
sufe range bet.ween 100 and 200 GPa the volume difference between * and liquid iron is

2% or less (Brown and McQueen, 1982), while the compression change is approximately
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20%. Since the electronic thermodynamic parameters are essentially determined by the
density of states, it appears that such parameters are not much affected by ‘the particu-

lar form of close-packing fepresented by the iron atoms. Thus our results may apply to

~ pure liquid iron under outer core conditions of pressure and temperature.

Recent studies indicate that at zero pressure, disordered iron possesses similar den-
sity of states to that of crystalline iron. Weir et al. (1983) used a tight-binding method
to investigate the electronic sta-t.es of amorphous or liquid iron. The density of states
due solely to d-bands, and that due to s-bands, differed little betw?en the disordered and
crystalline cases. They speculn.te_t.bst the general mixing between s- and d-bands in
non-symmetry directions in the crystal is sufficient to cause this similarity in the density
of states.

In another theoretical s.tudy, Yokoyama et al. (1983) used a semi-empirical entropy
scaling argument to calculate the electronic specific heat of liquid iron. Our caleulation
of ¢, extrapolated for 4-iron at T=1833 K and p=7.01 My m=> agrees almost exactly
with t.hj'eir cul_c;xlztidn for li-quid ifon at that 'tel-npenture"a.nd den;ity. At core pressures
liquiti iron would be more tightly packed; thus for the outer core the validity of these

theories would be enhanced for high compression.

The electronic physics of alloys presents additional challenges to core modelers. A
combination of light elements, particularly sulfur, oxygen; or hydrogen, is thought to
form a liquid alloy with iron in the outer core (see, e.g., Rin;wood, 1979). The propor-
tion of light element, or elements, to iron is probably close to 20 mol %, according to
shock wave and equation-of-state dzt;.

Available band structure calculational results do not yet come close to covering all

of the iron alloy compositions of interest to modelers of the core. However, enough work

has been done to allow some tentative conclusions to be drawn about the applicability to

the outer core of our pure crystalline iron calculation.
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Using the APW method for nonmagnetic Fe,Si Swintendick (1976) found that the
density of states at Ep is predominantly associated with contributions from the iron
sites. Koenig and Kh_a.n"(1;83) used the LMTO method to calculate the band structure
of FeAl in the CsCl structure. TBey also found that at the Fermi level the density of
states, and thus the electronic physical properties, a.l;e mainly controlled by the d-orbital
electrons of irc;n. This conclusion is supported by the experimental work of Muir et al
(1982). Their measurements of the electrical resistivity of a series of Fe3Si,_, Al, alloys
(with 0<z <1) strongly suggest that the conductivity is dominated by electrons from
the iron atoms. |

Nickel is thought to be also alloyed with iron in the outer core. The electronic
specific heat of such an alloy should be predictable because there exists a systematic

“trend in the density of states at the Fermi energy for the fcc 3d transition metals.
Moruzzi et al. (1978) plot the density of states for 32 metals, including (in the fcc phase)
cobalt, nickel, copper, and zinc. The Fermi. energy systematica.lly moves across density

- of states plots of -nea.rly identical form as successive 3d elements are considered and 3d -

electrons added. For nickel the Fermi energy falls on a shatp peak, giving ris? to a

greater electronic specific heat than has iron.

The electronic specific heat for a dilute iron-nickel alloy can be predicted by consid-I
ering how the denﬁty of states at the Fermi eneréy changes ffom the value of pure iron.
This change is due to the altered number of average conduction electrons per atom of
the alloy relative to the monatomic substance. According to the model of Morgan and
Anders (1980), the core should have approximately 5.8 wt % nickel and 88.8 wt % iron.
An iron-nickel alloy of this proportion would then bavé 5.9 mol % nickel. Since nickel
has 10 conduction electrons and iron has 8, the alloy has an average of 8.1 conduction
electrons per atom. We then assume that the total demsity of states of this alloy is
nearly identical to that of pure iron, which is reasonable because the dilute element,

nickel, displays density of states virtually indistinguishable from that of fce iron
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(Moruzzi et al., 1978). The new Fermi energy demanded by 8.1 conduction electrons per
atom yields a density of states at the Fermi level that is for core compressions 8 % less
than the value for pure.-ﬁ-iron. We then estimate, using the linear relationship given by
Eq. (10), that the same ratio ﬁoHs for the electronic specific heats. However, a similar
- analysis for 20 mol % sulfir or oxygen alloyed with iron gives an alloy electronic specific
heat that is 15-20 % greater than that for pure 4-iron. Thus it appears that for the

outer core the electronic effects due to nickel somewhat offset those due to sulfur or oxy-

gen.

A numerical value for the electronic specific heat of the core can be obtained from
Figs. 4 and 5. We used 3600 & 500 K as the temperature at the core-mantle boundary
(CMB) and 5100 4 500 K for the center of the Earth. These temperature choices are
justified by shock wave work on the equation of state of iron (Brown and McQueen,
1982; Shankland and Brown, 1985). We mapped this temperature region onto the ¢,
curves for our seven compressions and Psed PREM densities to further delineate the
region of the plots -applica.ble to the core. The ¢, curve for Rys = 2.4 bokr
corresponds for pure iron to a denait;of 10.80 Mg m =3, which is-close to the density in
the core at a spherical shell containing half of the volume of the core. Choosing a tem-
perature of T ==4200 K as representative of this "average® core region, we find that
pure iron under these “average” core conditions has an electronic specific heat

¢y, = 1.65 R for ~-iron and approximately 1.70 R for ¢-iron.

Alloying with nickel and with sulfur or oxygen -in-obably, as discussed above, raises
the electrc-mic specific heat approximately 10 % relative to that of ~-iron. However,
becauQe the density of states is relatively constant for energies near the Fermi energy for
€-iron, a dilute ¢-iron alloy probably bas an electronic specific heat the same as the value
for pure e-iron. Since the close-packed liquid alloy of the outer core is not clearly more
similar in form to one or the other of the fec and hcp structures, we conclude that the .

effect of alloying is to slightly raise the electronic specific heat relative to a value of



1.7 R for pure iron um.ier "average” core conditions. Therefore, we believe that
¢, =181+05R characterizes the electronic specific heat of the core. The uncertaint}.'
in this value depends on"se;en.l factors: numerical errors, the approximations necessary
for the band structure cale;ll;tion, and the range of values ascribable to core densities.
Since alteration of the Brillouin zone sampling density and the inclusion of relativistic
effects each changed the resultant electronic specific heat by only 1 %, and since varia-

tion of differentiation and integration techniques also had negligible effect, the quoted

uncertainty reflects the values assigned to the range of conditions in the core.

The heat capacity of the core can be easily estimated from the total specific heat,
¢y, and from the mean atomic weight, 7. Use of i == 49.3 g /mol (Watt et al., 1975)
and ¢, =3R + ¢, = 4.8R leads to a total core heat capacity of C = 1.6x107 J KL,

This is one-quarter of the heat capacity of the entire Earth.

‘The electronic specific heat and Gruneisen parameter are also useful in calculation

_of the temperature at the core-mantle boundary. However, use of our values of ¢, and

4. do not significantly alter the results given by Brown and McQueen (1985).-'

8. Conclusions

Application of the LMTO method of electronic band structure calculation for e-iron
and ~-iron has yielded density of electronic states for each phase under seven compres-
sions more than spanning the compressions of the Earth’s core. These densities of states
curves are of complex form because of contributions from d-shell electrons. However, the
two close-packed structures yield similar density of states. Electronic thermodynamic
quantities, such as the electronic specific heat and the electro_nic Gruneisen parameter,
are cietermined by the complex form of the density of states curves near the Fermi level.
This complicated form causes the electronic specific heat to deviate at core temperatures

from the standard metal linear relationship: ¢, = BT. A simple parameterization of

the high temperature portion of the electronic specific heat curves has been provided.
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A characteristic core value of the electronic specific heat has been determined to i)e
1.8 R. This value reflects pgnsideution of the fact that the outer core is not pure, cry-
stalline iron. Recent reu.i:ch indicates that the electronic density of states of liquid iron
is similar to that of pure, solid iron. Moreover, the density of states of iron alloyed with
nickel or a lighter, p-shell metal seems to differ from that of pure iron in a predictable,
minor way. Under high compression this similarity in the density of states should be
enhanced due to the regularity of atomic close-packing. Thus the material comprising
the outer core may be investigated in electronic thermodynamic properties by the results
of iron band structure calculations.

The heat capacity of the core is calculated to be one-quarter that of the entire
Earth. An electronic Grunéisen parameter of 1.34+0.4 is also determined for iron under
core conditions. This value does not lead to a significant reevaluation of the core-mantle
boundary temperature ascribed by Brown and McQueen (1985).

This study provides new constraints on Earth core electronic !;hermodyntmical
parameters. Model; of the core can benefit from-these new constraints. Further con-
straints will be provided by alloy band structure ;d&lui;m and experimental high

pressure research.
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TABLE 1
Pressure calibration at 77 = 0K

“| Rys (bokr) | o(Mg m~%) | p(GPa)
2.6 8.50 3.9
2.5 0.56 35.8
2.4 10.81 00.6
2.3 12.28 182
2.2 14.03 333
2.1 16.14 580+
2.0 18.68 977

* o(grio)sure values beyond 500 GPa are extrapolated beyond the empirical
mode



TABLE 2
Linear electronic specific heat parameters for ¢-iron*
R ws | 4 / VO i density T ﬁ ﬁs
(bohr) (Mg m3) | (RY | (mJ K2mol™Y) | (mJ K ¥ mol~)
2.8 0.966 8.50 2480 4.93 3.49
25 0.859 9.56 2940 4,00 2.93
24 0.760 10.81 3480 3.50 2.46
23 0.669 12.28 4140 2.95 2.06
2.2 0.585 14.03 4920 2.43 1.74
2.1 0.509 16.13 5880 2.05 1.47
2.0 0.440 18.68 7060 1.72 1.28
* (pg=8.28Mg m3)
TABLE 3

Linear electronic specific heat parameters for +iron*

Vv,

Rys density | T A Bsomm
(bohr) Mg m=) | (BY | (mJ K2mol7Y) | (ms B2mol-1)

2.6 0.923 8.50 2580 4.59 4.51

2.5 0.821 9.56 3020 3.89 3.78

2.4 0.728 10.81 3580 3.31 3.16

23 0.639 12.28 4280 2.77 2.64

2.2 0.559 14.03 5080 2.37 2.18

2.1 0.487 16.13 6020 1.98 1.84

2.0 0.420 18.68 7080 1.70 1.45

* (pg==7.94Mg m )




TABLE 4
_ Electronic specific heat fit
.~ parameters for y-iron

Rys (bohr) | cold Kmol ) | ©,(K) | b(md K-2mol-))

2.4 -2.10 5500 4.73
2.3 -4.33 - 5900 473
2.2 -8.89 6300 4.73
2.1 -0.19 8700 473

Electronic specific heat fit
parameters for e-iron

Rys (bohr) | cold K- 'mol") [ ©,(K) | b(mJ K2mol™)

24 -1.97 5700 4.73
23 -4.20 6100 4.73
22 -6.56 -} 6550 4.73

2.1 -0.32 7000 4.73




Figure captions

Fig. 1. ~-iron density of st;te: for Rys == 2.2, 2.3, 2.4, and2.5 bokr. The vertical line in
each plot indicates the Fermi energy.

Fig. 2. e-iron density of states for Rys == 2.2, 2.3, 2.4, and2.5 bokr. The vertical line in
each plot indicates the Fermi energy. .

Fig. 3. Density of states and Fermi function f (E) for ~-iron (top) and e-iron (bottom).
The maximum ordinate value for / (E') is 1. The long-dashed curve is f (E) for
T =0K, the short-dashed curve is for T == 5000 K, and the dot-dashed curve is for

T =10,(IX)K.

Fig. 4. Electronic specific heat for 4-iron. Curves are shown for the 7 compressions
given in Table 1. From top to bottom the curves successively correspond to increasing
compression. The small-scale fluctuations indicate the finiteness of the energy difference
between successive values of the density of states curves.

Fig. 5. Electronic specific heat for e-iron. Curves are shown for the 7 eomprions
given in Table 1. From top to bottom the curves successively correspond to increasing
compression. The small-scale fluctuations indicate the finiteness of the energy dxﬂerence
between successive va.luee of the dens:t.y of stat.es curves.

Flg 6. Electronic energy for ~-iron (top) and e-iron (bottom). The solid curves
represent the internal energy, %,(7 ), and the dashed curves represent the free energy,

F(T).

Fig. 7. Parameterized fit to the electronic specific heat of -iron (top) and e-iron (bot-
tom). See Table 4 for the parameters used. The dotted line represents the linear fit of .
¢y, With T < T, The fit is shifted in order to pass through the origin. The dashed

curve is the parameterized fit to ¢, with T 2> T
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